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Abstract

We present two methods for the rapid, high order accurate evaluation of integrals in potential theory on general,
unbounded 3D regions. Our methods allow for direct calculation of derivatives of the integrals as well. One of the methods
uses a fourth order compact stencil, and the other uses a nonstandard variant of Richardson extrapolation. Both methods
involve calculation of discontinuities in high order derivatives of the integrals across the boundary of the integration
region. The extrapolation method, in addition, involves correction for the discontinuities in truncation error. The number
of operations required for the methods is essentially equal to twice the number of operations needed to solve Poisson’s
equation on a regular grid. Both methods avoid problems associated with using quadrature methods to evaluate integrals
with singular kernels. Numerical results are presented for experiments on a variety of geometries in free space.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we develop fast, fourth order accurate methods for evaluating volume and surface integrals in
potential theory on general, unbounded three-dimensional regions. The methods are mesh based, and are gen-
eralizations of our previous work (see [15,30-37]).

Integral equation methods are often used for solving elliptic boundary value problems, especially on exterior
regions. In particular, they are frequently used for problems in electromagnetics [2,21,23,25,29], aerodynamics
[20], acoustics [6] and fluid dynamics [40]. The solution of such equations has been researched extensively, and
many effective methods are available. Among these are methods based on the fast multipole method
[11,14,17,18,42,43], wavelets [1], singular value decompositions [4,5], and other sparse representations.
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Despite these advances, difficulties are often encountered when integral equation methods are used to solve
realistic problems, especially nonhomogeneous ones where the equations therefore contain volume integrals.
First, it is expensive to compute the solution at many points by evaluating an integral. While one can evaluate
volume integrals in two dimensions using only O(n%) operations via the fast multipole method [11,16], the
method has not proven practical in 3D because the constants are so large. If one uses straightforward quad-
rature methods a total of O(n°®) operations are needed to evaluate a volume integral in a three-dimensional
region of O(r°) points since evaluating each integral requires O(n*) operations. Also, because the kernels have
O(}) singularities, standard quadrature methods are ineffective at nearby points, and implementations must
have greater complexity.

In prior work we developed methods which overcome these difficulties. In these methods the integral is eval-
uated by quadrature only at points at the edge of a regular region in which the irregular region is embedded.
Using these techniques we obtain full accuracy at mesh points near the boundary of the irregular region with-
out interpolation, and we can compute the derivatives of the integral directly with little loss of accuracy if the
boundary of the region is sufficiently smooth. This is particularly important in applications since usually only
derivatives of the integral are needed.

To be specific, we have solved Poisson’s [30,31,34] and the biharmonic equations [33], and the Navier
Stokes equations at low Reynolds number in two dimensions [36]. In addition, we have solved an exterior
interface problem in magnetic recording, used the method to develop a rapid method of conformal mapping
[32], and solved problems in fluid dynamics with immersed interfaces [28,37]. We have also parallelized the
method in two and three dimensions [15,31].

In these second order accurate methods we embed the irregular region in a rectangular region with a regular
grid. We approximate the integral U by approximating its second order accurate discrete Laplacian, A, at all
points of the grid, and then inverting the discrete Laplacian. To compute an approximation to A,U we use
known values of the Laplacian of U at points inside and outside the integration region, and discontinuities
in the derivatives of the integral at the boundary of the integration region.

In this paper we present fourth order accurate versions of our methods. One uses a fourth order compact 19
point stencil. The use of this stencil required development of easily evaluated formulas for the discontinuities
in higher order derivatives of the integrals. Because we were solving exterior problems we also needed to use a
fourth order accurate discrete free space Green’s function.

The other fourth order accurate method is an extrapolation method. In this method we compute two
approximations to the integrals using two different meshes, and then combine them to obtain a fourth order
accurate solution. Neither of the two original approximations is the standard second order accurate approx-
imation, although the computation of both requires the inversion of the usual second order discrete Laplacian.
The method relies on the fact that when one uses a second order discrete Laplacian in our method, the trun-
cation errors are the same as they would be if the integrals were smooth across the irregular boundary. How-
ever, because the truncation errors are discontinuous, the usual linear combination of two approximations
obtained will not be fourth order accurate. Instead, we must first correct for the truncation error discontinu-
ities before inverting the discrete Laplacians and combining the results. Our extrapolation method can also be
used to obtain a more accurate solution on just part of the computational domain. Richardson extrapolation
is also useful in obtaining error estimates. Furthermore, we can continue using Richardson extrapolation to
obtain sixth order accurate approximations to the integrals. We have also found that since one can invert the 7
point second order stencil more rapidly than the 19 point fourth order accurate stencil, this method is some-
what faster than the method which uses the fourth order discretization. This is because using FACR algo-
rithms one can invert the 7 point stencil with O(n*loglogn) operations. The fast Fourier methods used to
invert the fourth order 19 point stencil require O(n’logn) operations. However, although both methods are
fourth order accurate, in practice we have found the extrapolation method to be slightly less accurate.

In contrast to our earlier work the methods presented here are also effective on exterior regions. When using
finite difference methods on exterior problems boundary values at the edge of the grid are needed. Although
they can be obtained by quadrature, in three dimensions this requires O(#°) operations. Another possibility is
an algorithm developed by Hockney where one doubles the mesh in each direction, and then uses Fourier
methods. Unfortunately, this requires one to use twice the storage needed for the original problem. In an alter-
nate procedure developed by James [22] one only needs to double the mesh on the surface of the embedding
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region. The cost of this method on a uniform grid is the same as the cost of inverting the discrete Laplacian on
that mesh, and the extra storage is minimal. This method also requires a free space discrete Green’s function.
For calculations in our extrapolation method we have used a free space discrete Green’s function developed by
Burkhart [8], and for calculations with fourth order accurate stencils we have used one proposed by James
[22].

Among the primary advantages of our methods is that they do not require mesh generation in the interior
of the irregular region, often the most difficult part of the calculation [44].

We note that our methods for evaluating integrals are essentially methods for solving an elliptic differential
equation with discontinuous coeflicients. Of course, finite element methods are most often used for solving
such equations on general regions. However, mesh generation can be quite expensive for large 3D problems,
and the most rapid means of solving the discretized differential equations normally require a regular mesh.
Although multigrid and domain decomposition methods can have optimal complexity, they require the use
of multilevel methods. These in turn require a hierarchy of coarse grids, which can be difficult to obtain in
complicated regions.

Among the most effective methods for solving elliptic problems in complex geometries are those based on
regular grids. The earliest of these are known as capacitance matrix methods [10]. In particular, methods
developed by Widlund and coworkers [41] also use the embedding of the irregular region in a rectangular
region, and refer to an integral equation formulation. In their methods standard finite difference equations
are modified when a stencil crosses the boundary. The resulting matrix, known as a capacitance matrix,
can be written as the sum of the identity and an approximation to a compact operator on the boundary. They
formulate the problem so that the matrices are approximations to Fredholm integral equations of the second
kind, which they solve iteratively. Because the spectrum tends to be clustered, the convergence can be quite
rapid. However, we note that capacitance methods cannot take advantage of optimal methods of solving inte-
gral equations, and instead require a variable number of solutions of the regular grid problem. They also do
not allow direct computation of derivatives, nor do they easily allow development of fourth order accurate
versions for highly irregular regions.

Another important technique is the immersed boundary method developed by Peskin and McQueen [39]. It
was originally designed as part of a method for solving the unsteady Navier Stokes equations when there is an
infinitely thin interface contained in the fluid upon which there is a force. In this method the interface is mod-
eled as a set of discrete delta functions which are spread to the mesh. If the interface is not smoothed it is only
first order accurate, and as in all particle mesh methods the results obtained are somewhat embedding depen-
dent. It has been used to solve a wide variety of problems in computational biology, including aquatic loco-
motion [13].

The immersed interface method [26] is a second order accurate extension of the immersed boundary
method. It uses essentially the same method as [33] for problems with constant coefficients if the discontinu-
ities in the function and its derivatives across the interface are known. However, variants of it have been devel-
oped for solving problems with nonconstant coefficients, as well as for solving Neumann and Dirichlet
problems. In those cases the stencil is modified at points near the boundary to account for the jump condi-
tions. The method then results in matrices to which standard fast methods are not applicable, and variable
numbers of regular grid solves are required. It has been successfully applied to many problems including
the Navier Stokes problem [27].

Beale and Lai [3] have proven that in both [33] and the immersed interface method the solution can be com-
puted to O(4?) accuracy uniformly, and the gradient can be computed to O(h*log(1/h)) accuracy even if the
truncation error is O(/) at the interface, as long as it is O(h?) elsewhere.

The stencils are also modified in the Cartesian finite volume methods [23] developed by Johansen and Col-
ella. They have solved variable coefficient Poisson problems in the presence of an irregular interface on which
Dirichlet boundary conditions were imposed. Their method results in nonsymmetric discretization matrices,
and is combined with multigrid and adaptive mesh refinement techniques.

More recently Zhou et al. [46] introduced a high order interface scheme, the matched interface and bound-
ary method (MIB) for solving elliptic equations with discontinuous coefficients and singular sources on Carte-
sian grids. In this method the jump conditions are disassociated from the discretization by repeated
enforcement of the lowest order jump conditions.
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Another new method is the second or fourth order accurate boundary capturing method due to Gibou and
Fedkiw [12]. It can be used for solving Dirichlet problems for the variable coefficient Poisson equation on gen-
eral regions, and results in symmetric positive definite matrices with diagonally modified stencils and addi-
tional terms on the right-hand side. In this method, as in Johansen and Colella’s method, one cannot use
standard fast methods for solving difference equations on rectangular domains such as those based on the
FFT. Instead one must use iterative techniques.

We also note that, to our knowledge, none of the above methods have been used for the fourth order accu-
rate evaluation of volume integrals in free space.

The organization of this paper is as follows. In Section 2 we show how to compute second order accurate
approximations to volume integrals, in Section 3 we present the method which uses the 19 point fourth order
stencil, and in Section 4 we present our extrapolation method. In Section 5 we discuss boundary conditions,
and in Section 6 we discuss operation counts and extensions. In Section 7 we provide numerical results.

2. Second order accurate evaluation of volume integrals

We first show how to compute a second order accurate approximation to a volume integral whose kernel is
the free space Green’s function for the Poisson equation:

1 1
U =— ——f(¥,,Z)d¥'dy/d? 2.1
cod) =50 | | [y e, 1)
Where r(x7yazax/7y,7zl) = \/(X _x/)z + (y _y/)z + (Z _Z/)z‘
We embed the region of integration D in a larger rectangular region R with mesh widths (%, %
the standard 7 point approximation to the Laplacian:
Uivije *Uicijre —2Uije - Uijpip + Uijorg —2U5 5 Uijgerr + Uit — 2UG i
2 + 2 + 2 :
hy h; h

z

1, h2), and use

(AZ, U)f,_j,k =

To approximate U we compute an approximation to AZU at all points of R, and then apply a Poisson solver.
Since

AU = f in D, AU = 0 outside D, (2.2)

at mesh points (i, k) inside D that have all their neighbors in D, we set (AZ U )l.jk = fi» and at outside points
whose neighbors are also outside D we set (A] U) = 0.

We cannot use either formula at points near 0D because the derivatives U of second and higher order are
not continuous there.

Let B be the set of irregular mesh points, that is the set of points which have one or more of their neighbors
on the other side of 0D. At points of B an approximation to AZU can be expressed in terms of the disconti-
nuities in U and its derivatives in the coordinate directions at the boundary of D.

Suppose the boundary surface is locally given by x(s, 1), (s, ), z(s, f). where s and ¢ are two real parameters.

Since an integral of the form (2.1) and its normal derivative U, are continuous across 0D [24], the compo-
nents of the gradient are also continuous.

By (2.2) there must be discontinuities in the second derivatives of U.

To determine discontinuities in the six second derivatives of U we differentiate (2.2) in the normal and tan-
gential directions, and use the discontinuity in the Laplacian. This gives a system of six equations we can solve
for the discontinuities in the six second derivatives of U in the coordinate directions. (The coefficients of the
system depend on the functions x(s, ), ¥(s, ), z(s,¢) and their derivatives [33].)

These discontinuities are used to determine the discrete Laplacian of U at the irregular mesh points B.

Suppose, for example, that a mesh point p is in D, but the neighboring mesh point to the right, pg, is not.
Let p* be the point on the line between p and pg which intersects 0D, let /; be the distance between p and p*,
and let i, = h — hy.

We can derive the following expression for U(pg) — U(p) by manipulating the Taylor series at p and pg both
evaluated at p*. For details see [33].
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Ulpe) = Ulp) = (UGN + hs[U2(p)] + 5 B0 ()] + Bl )] + 5 U] + W)
5 Up) + 6 Una(p) + 5 Usalp) + OGF). 23

Here [g] denotes the discontinuity in a function g at a point on 0D. The first four terms depend on the dis-
continuities in U and in its x derivatives at the boundary, and the other terms are the usual Taylor series terms.
Therefore, the right-hand side of (2.3) is a sum of terms we can evaluate in terms of the discontinuities in U
and its derivatives, and terms we would have if there were no boundary between p and pg.

We obtain the same type of expressions for the differences between the value of U at p and at its other
neighbors, except that there will not be any boundary discontinuity terms unless 0D passes between p and
that neighbor. Therefore, at any of the irregular points. we can compute an approximation to the 7 point
discrete Laplacian of U, which is just the scaled sum of the differences between the values of U at that
point and at its neighbors. More precisely, for mesh points (i,j,k) € B we define the mesh function ml’.'jk
to be the value of the extra terms in the discrete Laplacian we get by our procedure using f and its
derivatives.

We define Uy, to be the solution of the following equations:

ﬁjk (l7j7k)€DiB7
AU, = Sk +mly (i, j,k) € BND, (2.4)
" ml, (i,j,k) € BN D",
0 (i,j,k) €R—D —B.

If the values of m” .« are second order accurate, then by applying a second order accurate Poisson solver the
function U, we obtain is a second order accurate approximation to U. See [33,34].

3. Fourth order accurate stencil

We have computed fourth order accurate approximations to integrals of the form (2.1) by using a fourth
order accurate stencil. Specifically, we have used the 19 point stencil
2 1

1
APU =ZA] —ABU = AU + —AA
YU 3,,U+6,,U U+12 U,

where

1 1
(A;1,3 U)ijx = Wisijoik + Uinrjirg + Uisrjorp + Uierjorx — 4U3jg) (ﬁ + ﬁ)

1 1
+ (Uiprjart + Uit jart + Uisijar + Uisija1 — 84U Gk) <ﬁ + ﬁ)

+ (Uijriget + Uijorgrt + Uipg—1 + Uijorgo1 — 84U Gx) <hlz + h12>
vy z

To obtain a fourth order accurate approximation to an integral U, we first compute a fourth order accurate
approximation to A}lf U. To do this we need to find differences in the values of U in the oblique directions as
well as the coordinate directions. These differences can be expressed as the sum of the usual Taylor series terms
and the discontinuities in the derivatives of U in the oblique directions. If the approximation to AL9U is to be
third order accurate we also need to retain more terms in the series expansions.

For example, suppose the point p = (x;, ;) is in D and the point pNg = (X;+1, 41, Zx) is not. Denote by
p*=(x",)",z%) the point where the line between p and png intersects 0D. We let 7y, = x™ — x;, iy, =" — yj,
h2x = hx — hlx and th = hy — hly'
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Instead of an expansion of the form (2.3) straightforward Taylor series manipulations in both the x and y
directions show that the difference Upg — Up is equal to the sum of the discontinuity terms

U]~ U ()]~ 2 (U )] — ey [ xy<p ) -2, - 2 )
vy -2 ”Uw(m B (0 [ U0 )] =222 (U ()
h;hgv hay h2 h4
U ()]~ P Uy ()]~ 52 (Ui )] (3.1)

and the usual Taylor series terms.

The terms involving lower order discontinuities in derivatives of U at p* can be determined using the
method detailed in Section 2. Now, however, we also need to compute discontinuities in higher order deriv-
atives. To compute the discontinuities in the 10 third order derivatives, Uy, Usyy, Usxz:Uyyy Uyyzy Uszz, Uy,
U,,., U..., and U... we use the 10 equations

[Usss} = [Us_vt} = [Ustt} = [Um] = 0»
[Unss] = [Unst} = [Untt] = 07
[(AU),] = £, [(AU) ] = £i[(AU),] = fa-

Discontinuities in higher order derivatives are computed similarly.

Once we have formed a fourth order accurate approximation to A}:’U we need to invert the operator A,ll9.
We have chosen to perform the calculation using the Fast Sine Transform. That is, since we are using Dirichlet
boundary conditions (see Section 5) we first calculate the three-dimensional Fast Sine Transform of our
approximation to A,llgU . Then we divide the result by the symbol of the operator A}ZQ. Finally, we apply the
three-dimensional inverse Fast Sine Transform.

Since the discrete operator (A}Tg)*1 is bounded, it follows that the solution obtained, U,, will be a fourth
order accurate approximation to U.

4. Extrapolation method

In the method of Richardson extrapolation one computes two approximations to the solution of a problem
using two different meshes. Then one forms a linear combination of these approximations so that the leading
terms in the truncation errors cancel. One thereby obtains a higher order accurate approximation.

If the original approximation method is second order accurate, then one generally computes a solution ¥,
with a mesh of some width 4, and another one, V>, using a mesh twice as wide. The function 4'/" "2 is then a
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fourth order accurate approximation to the solution of the problem V. The procedure relies on the existence of
an expansion of the form V = V), + h*E + O(h*) where the function E is independent of A.

Because of the discontinuities in the derivatives of the truncation error, we will not obtain a fourth order
accurate solution if we use the second order accurate method presented in Section 2. However, it turns out that
we can easily correct for these discontinuities.

First note that if we include boundary discontinuities in higher order derivatives of the integral U when we
approximate its 7 point discrete Laplacian, the truncation error will contain the usual fourth order derivatives
of the integral, as if there were no discontinuities in the derivatives U. That is,

, woooR R 4
Ah(U_Uh)ZEUXXXX+EU)WV+EUZZZZ+O(I/I) (41)

As when the solution of a Poisson problem is continuous, we consider the functions whose Laplacians are
equal to the leading terms in the truncation error. Specifically, we let E\(x,y,z), E\(x,,z) and EAx,y,z) be the
(piecewise differentiable) functions whose Laplacians are equal to the coefficients of the terms of order 4* on
the right-hand side of (3.1), and which are continuous in the tangential and normal directions across 0D:

UXJCxx
AEx(xava): 12’

U,
AEy(an’7Z) = 1}324{} )

UZZZZ (4.2)
AEZ(x7yﬂ Z) = 12 b

Ex(x7y7Z)vEy(xvy’Z)vEZ(xay7Z)a
Ew(x,3,2), Epn(x,¥,2), Ex(x,»,2) continuous across 0D.

Because the fourth derivatives of U(x,y,z) are not continuous across 0D, the functions E,, E,, and E_ will
have discontinuities in their second derivatives there. However, these discontinuities can be computed in terms
of the discontinuities in the fourth derivatives of U(x,y,z) using the method described in Section 2.

For given mesh width & = (h,, h,, h.) let e, eﬁ and let ¢! denote the extra terms in the discrete Laplacians of
E,, E,, and E. that arise because of these discontinuities:

Uxxxx ..

(AZEX)i.ﬁ/'Ak = 12 +e¢(1,‘],k) +O(h2)7
U y

(ALE)i 0 = =15+ ebli. g k) + O, (4.3)
U’ZZZ P

(ALE:)yp =5+ (b)) + O(R).

The above equations allow us to correct for truncation error discontinuities. That is, instead of computing
an approximation to the integral U(x, y,z), for given Ay, h,, h. we compute an approximation to the function
U=U-— (hx)zEx — (hy)zEy — (hZ)ZEZ. Thus, instead of solving (2.4) we find the mesh function U, such that

MU =ml, + [l — Bl (i j k) — Iel(i, j.k) — B2l (i, . k). (4.4)
We also recall that
1 ..
A,ZU = m?j,k + iﬁ‘,k + E(hjchxxxx + hiUWW + hjUzzzz(lvjvk)) + O(h;:; hi? hg) (45)

Subtracting (4.4) from (4.5) and using (4.3) we see that
AU = AUy + BE, + KE, + IE.) + O(hl; s ).

x? Ty Tz
Since (A])™' is a bounded linear operator it follows that

U= Uy+hE.+IE, + hE. + Ok il h?). (4.6)

xr o Itz
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Once we have computed an approximation U, using a mesh of width 4 = h,, h,, h. we double the mesh
width in each direction and compute another approximation U, using the above procedure. The mesh func-
tion U, satisfies the equation

U= Uy +4IE, + 4 E, + 40 E. + O(h}; by h?). (4.7)

Multiplying (4.6) by 4 and subtracting (4.7) we see that the linear combination % is a fourth order
accurate approximation to U.
This assumes that correct boundary conditions have been imposed at the edge of the computational region.

In the next section we show to impose these conditions.
5. Boundary conditions

In order to evaluate potential integrals using either of the fourth order accurate methods presented we need
to prescribe accurate free space boundary values. In essence, we do this using a procedure suggested by James
[22].

We first show how we can do this when we are using the fourth order accurate stencil. We start by using the
method of Section 3 to find a mesh function ¢; whose 19 point discrete Laplacian is the same as that of the
integral U, but which has zero Dirichlet boundary conditions at points in OR. After forming a fourth order
accurate approximation to the discrete Laplacian of U at points inside R, we use a triple Fast Sine Transform
[20] to invert it, although any other method could be used.

Next, setting the potential ¢, equal to zero at points outside R, we apply the fourth order discrete Laplace
operator at points adjacent to the boundary points of R to determine what physicists call the “screening
charge”. That is, at points inside R which are one mesh width away from dR we form ¢ = A’ ¢,.

Following this, we calculate the correction potential i, due to the screening charges. The function 1, is the
convolution of the screening charges with the fourth order accurate free space discrete Green’s function.

The approximation potential is the difference between the two mesh functions ¢, and y,: U, = ¢, — Y.
The procedure of computing screening charges and convolving them with a discrete free space Green’s func-
tion in order to solve Poisson’s equation in free space was first used by Von Hagenow and Lackner [45] and is
discussed in Hockney and Eastwood [21].

When we use the extrapolation method the way free space boundary conditions are imposed is essentially
the same. We begin by computing the mesh function ¢y, which is zero at the edge of the computational region
R and whose 7 point discrete Laplacian is the same as that of the function U. We do this using the procedure
described in Section 4. That is, after forming the discrete Laplacian of U we solve (4.4) to find ¢;, which
involves inverting the 7 point discrete Laplacian. In our experiments we used the FACR algorithm from
FISHPAK which combines the FFT with odd even reduction. We note that FACR algorithms exist for invert-
ing the 19 point stencil, but they are not as effective.

Then we determine the screening charges due to ¢y, i.e. after extending ¢, by zero, we compute the 7 point
discrete Laplacian at points in R less than one mesh width from OR. These screening charges are then con-
volved with the discrete free space Green’s function for the 7 point Laplacian on the region R to obtain
the correction potential, ;. We set Uy, = ¢y, — ¥y

We then repeat this procedure using a mesh twice as wide, i.e. we solve for a mesh function ¢,,, and then
compute the screening charge due to this function. Then we convolve the new screening charges with the dis-
crete Green’s function for the second order discrete Laplacian on the coarser mesh to obtain the correction
potential yr»,. The mesh function v, is subtracted from ¢, to obtain Uy,.

Finally, we form our approximation 4U”+U”

The above methods of calculation require the second or fourth order accurate discrete free space Green’s
functions.

The solution g(i,j,k) of a discrete equation

Ahg(iajv k) = 5(la]a k)a

where A, is any discrete Laplacian on a fixed mesh and d(i,, k) is a discrete Dirac delta function is known as a
discrete Green’s function. If, in addition, g(i,j, k) = K(1/r + s(i,},k)) for constant K and mesh function s(i,j, k)
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that goes to zero faster than 1/r then g(i,j, k) is a discrete free space Green’s function [9,22]. In two dimensions
exact formulas for the free space discrete Green’s function corresponding to both the second and fourth order
accurate discrete Laplacians were given by Buneman [7,8], and are easy to compute.

In three dimensions no exact formulas are known. Often people solve problems on exterior regions merely
by using a large computational grid and imposing zero Dirichlet conditions at the edge of the grid. Since it
allows us to use a smaller computational region we have chosen instead to use asymptotic expansion methods
to determine values of the free space discrete Green’s functions at the edge of the embedding region R, and
determine values inside R by solving the second or fourth order discrete Poisson equation with an unit source
at the origin. This procedure is common [9,20,22]. In practice, since the Green’s function is symmetric, we only
need to know its value on a mesh which is the size of R.

To determine boundary conditions for the 7 point second order discrete Green’s function we used the
asymptotic expansion developed by Burkhart [9]. His expansion is valid for all orders, but we only use terms
of order up to O(%).

For finding the boundary values of the discrete Green’s function for the 19 point fourth order stencil we
used the asymptotic expansion proposed by James [22].

We note that, as Burkhart has suggested, if the embedding region R is too small, the asymptotic expansion
may not be accurate enough on its boundary. In that case one can start with a larger embedding region and
partially solve the Dirichlet problem to obtain more accurate boundary data for the smaller box.

Once we have determined a discrete free space Green’s function g(i, 7, k) we can compute the potential due to
the screening charges ¢(i,/, k) at points in the embedding region R. At any point p this potential is, of course,
the discrete convolution of g with the charges:

Wi k) =Y gli—1,j—j k—K)qi,jK). (5.1)

i

One very fast way of performing the calculation is by using an algorithm originally proposed by James, which
is a modification of an algorithm initially popularized by Hockney [19]. In three dimensions Hockney’s meth-
od requires twice the storage needed for the original mesh, and some sophisticated programming. Essentially,
the method uses the fact that if one reflects the Green’s function in each coordinate direction and convolves
with the original charge one obtains the correct potential on the original mesh.

In the James algorithm the doubling procedure is used to calculate the free space potential due to the
screening charges, but the doubling is only of the boundary values, and not the whole mesh. The operation
count of the algorithm is O(n’log,n) where n is the number of mesh points in each direction in the embedding
region, and the extra storage is minimal. In our calculations we first found the potential due to screening
charges at points on OR by direct calculation using (5.1). Then we computed the potential inside R using a
fast Poisson solver.

6. Operation counts and extensions

Once the discrete second or fourth order free space Green’s function have been determined, the computa-
tional cost of the methods is essentially equal to twice the costs of inverting the the discrete Laplacians.

For example, if we are using the fourth order discretization method, computing the discrete Laplacian of ¢,
has a cost O(n?) operations since there are O(#?) irregular mesh points. Using Fourier methods to invert the 19
point stencil to determine ¢, requires O(n*log,n) operations (the constant is approximately 10). Finding the
screening charges takes O(n’) operations and convolving them with the free space Green’s function requires
O(n’logn) operations. Subtracting the potentials, i.e. forming U, = ¢, — ;, only requires O(r’) operations.
Thus the total operation count is asymptotically twice the cost of the Fourier inversion methods, or
O(n’logn), where the constant is approximately 20.

When we use the extrapolation method, determining the potential function ¢, by the FACR algorithm has
an operation count of O(n’loglogn), as does determining ¢»;, although since the coarser mesh has only 1/8th
the number of points, the constant is more than eight times smaller there. Finding the screening charges takes
O(n?) operations, while the operation counts for convolving the screening charges with the discrete second
order free space Green’s functions are O(n’loglogn). Forming the linear combination of the final potentials
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Uy and Uy, requires O(#°) operations. So in this case the total operation count is O(n*loglogn), which is
smaller than the operation count for the fourth order discretization method.

We note that the methods we have presented allow us to obtain fourth order accurate approximations to
other integrals in potential theory. For example, we can evaluate certain surface integrals and derivatives of
the surface and volume integrals.

In order to evaluate surface integrals we can use the same basic method that we use to evaluate the volume
integrals. In particular, we can use it to evaluate integrals of single layer density functions:

W (e, 2) = 1/4n/ /aDp(S, §)(1/r)ds

and integrals of double layer density functions:

Wi (x,y,z) —l/4n// st l/r)

As when we evaluate volume 1ntegrals, the problem of evaluating these integrals reduces to evaluating their
Laplacians in the integration regions and outside, and evaluating the discontinuities in their derivatives at
the boundary.

We first note that the Laplacians of both integrals vanish in the two regions.

To determine discontinuities in integrals of single layer density function we note that they are continuous in
the tangential direction, and have a discontinuity equal to their density in the normal direction [38]. Similarly,
to determine discontinuities in integrals of double layer density functions we use the facts that they are con-
tinuous in the normal direction and their discontinuity in the tangential derivative is equal to their density
function. Once again these discontinuities determine the discontinuities in the derivatives of these integrals
in any directions [31], and these are used to determine the discrete Laplacians at the irregular mesh points.

We now show how to evaluate derivatives, or a linear combination of the derivatives of a surface or volume
integral.

To evaluate discontinuities in derivatives of integrals with differentiated kernels we use the fact that those
integrals are derivatives of integrals with undifferentiated kernels. For example, suppose

Q !/ !/ / .
(63,2 4Tc///6xrxy,zx,y Z)f(x,y,z)dV

We note that Q = U, where

R N e L e

Since we know how to compute the discontinuities in the derivatives of U, we can, of course, compute the dis-
continuities in the derivatives of Q = U,. As before, once we know the discontinuity terms we can use them to
approximate the discrete Laplacian of Q. Once we know the discrete Laplacian, we invert it to determine Q.

Finally, we note that if one solves a boundary integral equation, one can solve Poisson problems with dis-
continuous but constant coefficients using the methods presented [31].

7. Numerical experiments

In this section we report on results of numerical experiments.

We tested our methods on problems where the regions of integration were unions of spheres or unions of
ellipsoids. The computations were performed in double precision, and as mentioned above, once the discrete
Green’s functions were determined the running times were essentially equal to twice the time needed to apply a
three-dimensional Poisson solver. That is, when we used the fourth order accurate stencil the running time was
essentially twice the time needed to use Fourier methods to invert the fourth order discrete Laplacian on the
embedding region, and when we used the extrapolation method it was essentially twice the time needed to
apply the FACR algorithm on the embedding region.
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When the integration regions were unions of spheres the integrals could be evaluated analytically, both
inside and outside the region of integration. We could therefore determine errors and rates of convergence.
In particular, we note that if the integration region D consists of a single sphere,
(x — cx)2 + - cy)2 +(z— cz)2 = r2, and the inhomogeneous term is constant, /= fo, then the value of the

integral U is equal to f %—% at points inside the sphere, and —f‘;—'r"‘ at points outside where
2 3

r= \/(x —e) + (- cy)2 + (z—¢.)’. If the inhomogeneous term is f'= 20> the exact solution is #
inside D, and } outside D. When the regions of integration are unions of spheres then since integration is a
linear functional, the values of the integral at a given point are the sums of the values of the integral over

the individual spheres. When the regions of integration were unions of ellipsoids (x_ai")z + @;?)2 + (z_c?)z =1,
we used the solution on the finest mesh, 128 points in each direction, as the reference solution. That is we
assumed that the solution computed on the 128 by 128 by 128 mesh was the exact solution and compared
the others to it.

Both the spheres and ellipsoids were parametrized using Cartesian coordinates, i.e. we let s =x, t =y, so

that x(s,7) = x, y(s,7) =y, and z(s, t) = c. + C\/(l —(x—c)’ /= (y —¢,)’/b).

In Table 1a we give results of calculations using the fourth order accurate stencil to calculate the integral
(2.1) for f= —3. The integration region D was the unit sphere centered at the origin, and the embedding region
was the cube [—1.51,1.51F.

The numbers 7 in column 1 are the number of mesh points in each direction in the embedding cube, the
numbers in the next column are the maximum relative errors, the numbers in column 4 are the L? norms
of the relative errors, and the numbers in columns 3 and 5 specify the rate of convergence (i.c., the power
of h reduction in the error) measured in the L norm and the L? norm, respectively.

In Table 1b we give results of using our extrapolation method to evaluate the same integral.

We see that the extrapolation method is slightly less accurate on this and other problems, but recall that the
computation times are also slightly shorter. More precisely, since the number of operations needed to invert
the 7 point discrete Laplacian in three dimensions on an n by n by n grid is approximately 5 n*loglogn, while
the number required to invert the the 19 point Lapacian is 10 n*logn, the ratio of operation counts approaches
2logn/loglogn. The difference is more significant the larger 7 is.

In Table 2 we give results of experiments where the integration regions were ellipsoids with semiaxes @ = 1,
b=0.6 and ¢=0.3. The embedding region and inhomogeneous term were the same as in the previous
example.

Next, we used our fourth order discretization method on a problem where the integration region consisted
of two touching unit spheres and on a problem where the integration region consisted of two touching ellip-
soids. The spheres were centered at (—1,0,0) and (1,0,0), and the ellipsoids were centered at the same points

Table la

Unit sphere, fourth order discretization

n L™ error Rate L? error Rate
16 0.522E — 03 3.68 0.276E — 03 3.94
32 0.408E — 04 3.81 0.180E — 04 3.96
64 0.290E — 05 3.99 0.115E — 05 4.01

128 0.183E — 06 0.713E — 07

Table 1b

Unit sphere, extrapolation method

n L™ error Rate L? error Rate
16 0.165E — 02 3.57 0.115E — 02 3.75
32 0.138E — 03 3.80 0.851E — 04 3.94
64 0.994E — 05 4.00 0.554E — 05 4.02

128 0.621E — 06 0.341E — 06
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Table 2a

Ellipsoid, fourth order discretization

n L error Rate L? error Rate
16 0.694E — 03 3.97 0.372E — 03 4.00
32 0.443E — 04 391 0.233E — 04 4.00
64 0.294E — 05 0.146E — 05

Table 2b

Ellipsoid, extrapolation method

n L™ error Rate L? error Rate
16 0.371E — 02 4.01 0.175E — 02 4.02
32 0.231E — 03 3.94 0.108E — 03 3.96
64 0.150E — 04 0.696E — 05

and had semiaxes ¢« =1, b =0.5 and ¢ =0.25. In each sphere and ellipsoid the inhomogeneous term f was
equal to —3. In both cases the embedding region was the cube [—2.51,2.51T. Results are given in Tables 3a
and 3b.

In Table 4 we give results of using our extrapolation method to compute integrals over the same regions as
in the previous example. The integration and embedding regions as well as the inhomogeneous term were also
the same as in Table 3. The errors and convergence rates are for the L? norm.

Results in Table 5 are for calculating the x derivative of the integral with inhomogeneous term f'= 3 on the
unit sphere centered at the origin and on the ellipsoid with semiaxes a =1, b =0.4 and ¢ = 0.2 using the
extrapolation method. The embedding region was the cube [—4.1,4.1F. See Tables 6a and 6b.

Table 3a
Two spheres, fourth order discretization
n L™ error Rate L? error Rate
16 0.387E — 02 3.96 0.813E — 03 4.00
32 0.249E — 03 3.90 0.508E — 04 3.99
64 0.166E — 04 3.96 0.321E — 05 4.01
128 0.107E — 05 0.199E — 06
Table 3b
Two ellipsoids, fourth order discretization
n L™ error Rate L? error Rate
16 0.493E — 02 3.95 0.159E — 02 3.87
32 0.319E — 03 3.95 0.109E — 03 4.00
64 0.206E — 04 0.682E — 05
Table 4
Extrapolation method
n Two spheres Two ellipsoids
L? error Rate L? error Rate
16 0.635E — 02 3.85 0.901E — 02 3.95
32 0.441E — 03 3.86 0.584E — 03 4.02
64 0.303E — 04 4.00 0.358E — 04

128 0.189E — 05
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Table 5a

Sphere, x derivatives, extrapolation method

n L error Rate L? error Rate
16 0.774E — 02 3.74 0.676E — 02 3.73
32 0.580E — 03 3.65 0.510E — 03 3.97
64 0.461E — 04 4.03 0.325E — 04 4.00

128 0.282E — 05 0.203E — 05

Table 5b

Ellipsoid, x derivatives, extrapolation method

n L™ error Rate L? error Rate

16 0.135E — 01 3.87 0.983E — 02 3.93

32 0.926E — 03 391 0.642E — 03 3.94

64 0.618E — 04 0.418E — 04

Table 6a

Sphere, f = r?, extrapolation method

n L error Rate L? error Rate
16 0.950E — 03 391 0.571E — 03 3.96
32 0.631E — 04 3.93 0.366E — 04 3.94
64 0.413E — 05 4.01 0.241E — 05 4.00

128 0.257E — 06 0.150E — 06

Table 6b

Ellipsoid, f = %, extrapolation method

n L error Rate L % error Rate

16 0.139E — 02 3.95 0.899E — 03 3.89

32 0.897E — 04 3.97 0.605E — 04 4.01

64 0.574E — 05 0.376E — 05

In our next experiments the integration regions were the same as in the previous example, and the integrals
were computed using the extrapolation method. This time the inhomogeneous term was /= 20r%, and the
embedding region was [—3.5,3.5F.

In Table 7 we present results of experiments using our fourth order discretization method where the inte-
gration regions consisted of four spheres of radius 0.8 (first two columns) or four ellipsoids with semiaxes
a=0.8, b=0.6 and ¢=0.4 second two columns). The centers of the spheres and ellipsoids were
(—1.25,0,0), (1.25,0,0), (0, — 1.250), and (0,1.25,0), the inhomogeneous terms were set to —3 on all the
regions, and the embedding regions were the cube [—2.61,2.61T.

Table 7
Fourth order discretization
n Four spheres Four ellipsoids
L™ error Rate L™ error Rate
16 0.198E — 01 3.94 0.317E — 01 3.88
32 0.129E — 02 3.98 0.215E — 02 3.96
64 0.818E — 04 4.00 0.138E — 03

128 0.511E — 05
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8. Conclusions

We have presented two fourth order accurate methods for evaluating volume integrals in potential theory
on general three-dimensional regions in free space. One of the methods uses a compact, high order stencil, and
the other is an extrapolation method. Both methods use standard Poisson solvers on a larger region in which
the irregular region is embedded. In addition they require the use of a discrete free space Green’s function. We
have performed numerical experiments on a variety of exterior regions that demonstrate that our proposed
methods are indeed fourth order accurate.
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